
A Flexible Approach to

Staged Events

6th International Workshop on Parallel Programming Models and

Systems Software for High-End Computing (P2S2)

October 1st 2013 – Lyon, France

Tiago Salmito
tsalmito@inf.puc-rio.br

Ana Lúcia de Moura

Noemi Rodriguez

S
ta

ck
 m

a
n

a
g

em
en

t

Task management

Preemptive Cooperative

A
u
to

m
at

ic

M
an

u
al

Event-driven

Cooperative

threads Multithread

* A. Adya, J. Howell, M. Theimer, W. J. Bolosky and J. R. Douceur. Cooperative Task Management

Without Manual Stack Management. (2002)

Concurrency Models

2

Hybrid Concurrency Models

• Models combining threads and events

• Programing model bias:

– Hybrid event-driven

• More than one concurrent event loops

– Hybrid thread based

• Converts (user) threads to cooperative events during
runtime

– Staged event-driven

• Does not have a clear bias towards events or threads

• Pipeline processing

3

4

The Staged Model

• Inspired by SEDA
– Staged Event-Driven Architecture

• Flexibility
– Exposes both concurrency models

• Characteristics:
– Applications are designed as a collection of stages

– Stages are multithreaded modules

– Asynchronous processing (event-driven communication)

• Decoupled scheduling
– Local policies

– Resource aware

5

Stages

6

Stage

Event

handler

Dispatch

events
Event queue

Observe

state

Adjust

parameters

...

Thread pool

Scheduler

Controller

Stages: Some issues

• Coupling

– Specification

• Hinder reuse

– Execution

• Single (shared) address space

• Use of operating system threads

– Thread sharing

• Local and global state sharing

– Race conditions

– Distributed resources

7

Extending the Staged Model

• Objective: Decoupling

– Decisions related to the application logic and

decisions related to the execution environment

• Characteristics

– Stepwise application development

– Stage composition and reuse

– Cooperative execution with multiple threads

8

PCAM Design Methodology

• Partitioning

– Functional or domain
decomposition

• Communication

– Data exchange

• Agglomeration

– Processing and
communication granularity

• Mapping

– Mapping tasks to
processors

9

Problem

Partitioning Communication

Agglomeration

Mapping

Stepwise development

• Programming Stages
– Functional decomposition

– State isolation
• Transient state

– Domain decomposition

• Persistent state
– Atomic execution

• Communication
– Connectors: Application graph

– Output ports and event queues

• Agglomeration
– Clusters of stages

– Scheduling domain

• Mapping
– Execution locality

10

Communication

Programming

Stage

Event

handler

Stage

Event

handler

Stage

Event

handler
...

1

2

3 4

5

Connector

Agglomeration

3

5

Mapping

Process 1

1 2
Controller

Process 2

3 4
Controller

Process 3

5

Controller

Cluster

1

2

4

Leda

• Distributed platform for staged applications

• Implemented in C and Lua

– Scripting environment

– Use of C for CPU-intensive operations

• Declarative application description

– Application graph

– Execution configuration

11

Example: echo server

12

require 'leda'

local port=5000

local server=leda.stage{

 handler=function()

 local server_sock=assert(socket.bind("*", port))

 while true do

 local cli_sock=assert(server_sock:accept())

 leda.send("client",cli_sock)

 end

 end,

 init=function() require'leda.utils.socket' end,

}:push()

local reader=leda.stage{

 handler=function(sock)

 repeat

 local msg,err=sock:receive()

 leda.send("message",msg)

 until msg==nil

 end

}

local echo=leda.stage(function(msg) print(msg) end)

local graph=leda.graph{

 server"client"..reader,

 reader"message"..echo

}

graph:run()

Evaluation

13

Workgen Reducer

Stage 1

Stage 2

Stage 3

Internal statistics

Worst case scenario Best case scenario

14

Final Remarks

• Hybrid concurrency

– Event-driven, thread based or staged

• An extension to the staged model

– Stepwise application development

• Implementation of a distributed platform for

staged applications

– Leda

15

A Flexible Approach to

Staged Events

6th International Workshop on Parallel Programming Models and

Systems Software for High-End Computing (P2S2)

October 1st 2013 – Lyon, France

Tiago Salmito
tsalmito@inf.puc-rio.br

Ana Lúcia de Moura

Noemi Rodriguez

Extra: Runtime Architecture

17

Process 1

S2 S3
S5

S4 S7
S1

S6

S8

Application

Ready queue

Thread

Thread

Thread

Thread pool

Controller

To/from

other

processes

Cluster

Instances

Scheduler

To process 2

S1
S2
S3

S4

Idle instances
M

a
rsh

a
llin

g

S1
S2
S3
S4

Event queues

S2 S3

S4
S1

I/O interfaces

Asynchronous

events

Waiting

instances

Thread

Cluster 1 Cluster 2

Runtime

Statistics

